1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! Decodes Reed Solomon and BCH codes using the Berlekamp-Massey, Chien Search, and //! Forney algorithms. //! //! # Decoding Procedure //! //! The standard [1]-[11] procedure for Reed Solomon/BCH error correction has the //! following steps: //! //! 1. Generate the syndrome polynomial s(x) = s<sub>1</sub> + s<sub>2</sub>x + ··· + //! s<sub>2t</sub>x<sup>2t-1</sup>, where s<sub>i</sub> = r(α<sup>i</sup>) using the //! received word polynomial r(x). //! 2. Use s(x) to build the error locator polynomial Λ(x) = (1 + a<sub>1</sub>x) ··· (1 + //! a<sub>e</sub>x), where deg(Λ(x)) = e ≤ t is the number of detected errors. //! 3. Find the roots a<sub>1</sub><sup>-1</sup>, ..., a<sub>E</sub><sup>-1</sup> of Λ(x), //! such that Λ(a<sub>i</sub><sup>-1</sup>) = 0. Then for each, if //! a<sub>i</sub><sup>-1</sup> = α<sup>k<sub>i</sub></sup>, the error location within //! the received word is taken as m<sub>i</sub> in α<sup>m<sub>i</sub></sup> ≡ //! α<sup>-k<sub>i</sub></sup> (modulo the field). //! 4. Verify that e = E. //! 5. Construct the error evaluator polynomial Ω(x) = Λ(x)s(x) mod x<sup>2t</sup> and //! compute each error pattern b<sub>i</sub> = Ω(a<sub>i</sub><sup>-1</sup>) / //! Λ'(a<sub>i</sub><sup>-1</sup>). //! 6. For each (m<sub>i</sub>, b<sub>i</sub>) pair, correct the symbol at location //! m<sub>i</sub> using the bit pattern b<sub>i</sub>. //! //! This module implements steps 2 through 5. The implementation uses several well-known //! techniques exist to perform these steps relatively efficiently: the Berlekamp-Massey //! algorithm for step 2, Chien Search for step 3, and the Forney algorithm for step 5. //! //! # Berlekamp-Massey Algorithm //! //! The Berlekamp-Massey algorithm has many variants [1], [2], [9], [12], [13] mostly with //! subtle differences. The key observation from Massey's generalization is to view Λ(x) //! as the "connection polynomial" of a linear feedback shift register (LFSR) that //! generates the sequence of syndromes s<sub>1</sub>, ..., s<sub>2t</sub>. The algorithm //! then synthesizes Λ(x) when constructing the corresponding unique shortest LFSR that //! generates those syndromes. //! //! # Chien Search //! //! With Λ(x) = Λ<sub>0</sub> + Λ<sub>1</sub>x + Λ<sub>2</sub>x<sup>2</sup> + ··· + //! Λ<sub>e</sub>x<sup>e</sup> (where Λ<sub>0</sub> = 1), let P<sub>i</sub> = //! [p<sub>0</sub>, ..., p<sub>e</sub>], 0 ≤ i < n, which is indexed as P<sub>i</sub>[k], //! 0 ≤ k ≤ e. //! //! Starting with the base case i = 0, let P<sub>0</sub>[k] = Λ<sub>k</sub> so that //! Λ(α<sup>0</sup>) = Λ(1) = Λ<sub>0</sub> + Λ<sub>1</sub> + ··· + Λ<sub>e</sub> = //! sum(P<sub>0</sub>). //! //! Then for i > 0, let P<sub>i</sub>[k] = P<sub>i-1</sub>[k]⋅α<sup>k</sup> so that //! Λ(α<sup>i</sup>) = sum(P<sub>i</sub>). //! //! # Forney Algorithm //! //! The Forney algorithm reduces the problem of computing error patterns to evaluating //! Ω(x) / Λ'(x), where Ω(x) = s(x)Λ(x) mod x<sup>2t</sup>. This requires no polynomial //! long division, just a one-time polynomial multiplication and derivative evaluation //! to create Ω(x), then two polynomial evaluations and one codeword division for each //! error. use std; use collect_slice::CollectSlice; use coding::galois::{Polynomial, PolynomialCoefs, P25Codeword, P25Field, GaloisField}; /// Finds the error location polynomial Λ(x) from the syndrome polynomial s(x). /// /// This uses Hankerson et al's version of the Berlekamp-Massey algorithm, with the result /// being Λ(x) = p<sub>2t</sub>(x) = σ<sub>R</sub>(x). pub struct ErrorLocator<P: PolynomialCoefs> { /// Saved p polynomial: p<sub>zi-1</sub>. p_saved: Polynomial<P>, /// Previous iteration's p polynomial: p<sub>i-1</sub>. p_cur: Polynomial<P>, /// Saved q polynomial: q<sub>zi-1</sub>. q_saved: Polynomial<P>, /// Previous iteration's q polynomial: q<sub>i-1</sub>. q_cur: Polynomial<P>, /// Degree-related term of saved p polynomial: D<sub>zi-1</sub> deg_saved: usize, /// Degree-related term of previous p polynomial: D<sub>i-1</sub>. deg_cur: usize, } impl<P: PolynomialCoefs> ErrorLocator<P> { /// Construct a new `ErrorLocator` from the given syndrome polynomial s(x). pub fn new(syn: Polynomial<P>) -> ErrorLocator<P> { ErrorLocator { // Compute 1 + s(x). q_saved: Polynomial::new( std::iter::once(P25Codeword::for_power(0)) .chain(syn.iter().take(P::syndromes()).cloned()) ), q_cur: syn, // Compute x^{2t+1}. p_saved: Polynomial::unit_power(P::syndromes() + 1), // Compute x^{2t}. p_cur: Polynomial::unit_power(P::syndromes()), deg_saved: 0, deg_cur: 1, } } /// Construct the error locator polynomial Λ(x). pub fn build(mut self) -> Polynomial<P> { for _ in 0..P::syndromes() { self.step(); } self.p_cur } /// Perform one iterative step of the algorithm, updating the state polynomials and /// degrees. fn step(&mut self) { let (save, q, p, d) = if self.q_cur.constant().zero() { self.reduce() } else { self.transform() }; if save { self.q_saved = self.q_cur; self.p_saved = self.p_cur; self.deg_saved = self.deg_cur; } self.q_cur = q; self.p_cur = p; self.deg_cur = d; } /// Shift the polynomials since they have no degree-0 term. fn reduce(&mut self) -> (bool, Polynomial<P>, Polynomial<P>, usize) { ( false, self.q_cur.shift(), self.p_cur.shift(), 2 + self.deg_cur, ) } /// Normalize out the degree-0 terms and shift the polynomials. fn transform(&mut self) -> (bool, Polynomial<P>, Polynomial<P>, usize) { let mult = self.q_cur.constant() / self.q_saved.constant(); ( self.deg_cur >= self.deg_saved, (self.q_cur + self.q_saved * mult).shift(), (self.p_cur + self.p_saved * mult).shift(), 2 + std::cmp::min(self.deg_cur, self.deg_saved), ) } } /// Finds the roots of the given error locator polynomial Λ(x). /// /// This performs the standard brute force method, evaluating each Λ(α<sup>i</sup>) for 0 /// ≤ i < 2<sup>r</sup> - 1, with the Chien Search optimization. pub struct PolynomialRoots<P: PolynomialCoefs> { /// Error locator polynomial: Λ(x). /// /// This field isn't exactly interpreted as a polynomial, more like a list of /// coefficient A = [Λ<sub>0</sub>, ..., Λ<sub>e</sub>] such that Λ(α<sup>i</sup>) = /// sum(A) for the current power i. loc: Polynomial<P>, /// Current codeword power the polynomial is being evaluated with. pow: std::ops::Range<usize>, } impl<P: PolynomialCoefs> PolynomialRoots<P> { /// Construct a new `PolynomialRoots` from the given error locator polynomial Λ(x). pub fn new(loc: Polynomial<P>) -> Self { PolynomialRoots { loc: loc, pow: 0..P25Field::size(), } } /// Update each term's coefficient to its value when evaluated for the next codeword /// power. fn update_terms(&mut self) { for (pow, term) in self.loc.iter_mut().enumerate() { *term = *term * P25Codeword::for_power(pow); } } /// Compute Λ(α<sup>i</sup>), where i is the current power. fn eval(&self) -> P25Codeword { self.loc.iter().fold(P25Codeword::default(), |sum, &x| sum + x) } } /// Iterate over all roots α<sup>i</sup> of Λ(x). impl<P: PolynomialCoefs> Iterator for PolynomialRoots<P> { type Item = P25Codeword; fn next(&mut self) -> Option<Self::Item> { loop { // Current codeword power: i in α^i. let pow = match self.pow.next() { Some(pow) => pow, None => return None, }; // Compute Λ(α^i). let eval = self.eval(); // Update to Λ(α^{i+1}). self.update_terms(); // Yield α^i if Λ(α^i) = 0. if eval.zero() { return Some(P25Codeword::for_power(pow)); } } } } /// Computes error locations and patterns from the roots of the error locator polynomial /// Λ(x). /// /// This uses the Forney algorithm for error pattern evaluation, which avoids polynomial /// long division. pub struct ErrorDescriptions<P: PolynomialCoefs> { /// Derivative of error locator polynomial: Λ'(x). deriv: Polynomial<P>, /// Error evaluator polynomial: Ω(x) = Λ(x)s(x) mod x<sup>2t</sup>. vals: Polynomial<P>, } impl<P: PolynomialCoefs> ErrorDescriptions<P> { /// Create a new `ErrorDescriptions` from the given syndrome polynomial s(x) and error /// locator polynomial Λ(x). pub fn new(syn: Polynomial<P>, loc: Polynomial<P>) -> Self { ErrorDescriptions { // Compute Λ'(x). deriv: loc.deriv(), // Compute Λ(x)s(x) mod x^{2t}. vals: (loc * syn).truncate(P::syndromes() - 1), } } /// Compute the error location and pattern for the given root /// a<sub>i</sub><sup>-1</sup> of Λ(x). pub fn for_root(&self, root: P25Codeword) -> (usize, P25Codeword) { ( // If Λ(α^i) = 0, then the error location is m ≡ -i (modulo the field.) root.invert().power().unwrap(), // Compute Ω(α^i) / Λ'(α^i). self.vals.eval(root) / self.deriv.eval(root), ) } } /// Decodes and iterates over codeword errors. pub struct Errors<P: PolynomialCoefs> { /// Roots of the error locator polynomial. /// /// Note that this field isn't interpreted as a polynomial -- the `Polynomial` type /// just provides a conveniently sized buffer for root codewords. roots: Polynomial<P>, /// Computes location and pattern for each error. descs: ErrorDescriptions<P>, /// Current error being evaluated in iteration. pos: std::ops::Range<usize>, } impl<P: PolynomialCoefs> Errors<P> { /// Create a new `Errors` decoder from the given syndrome polynomial s(x). /// /// If decoding was sucessful, return `Some((nerr, errs))`, where `nerr` is the number /// of detected errors and `errs` is the error iterator. Otherwise, return `None` to /// indicate an unrecoverable error. pub fn new(syn: Polynomial<P>) -> Option<(usize, Self)> { // Compute error locator polynomial Λ(x). let loc = ErrorLocator::new(syn).build(); // If e = deg(Λ), then e ≤ t and e represents the number of detected errors. let errors = loc.degree().expect("invalid error polynomial"); // Find the roots a_i of Λ(x). These are buffered before processing them because // if the number of found roots ends up unequal to deg(Λ(x)), all the roots are // invalid, and processing them before checking this can cause behavior like // divide-by-zero. let mut roots = Polynomial::<P>::default(); let nroots = PolynomialRoots::new(loc).collect_slice_exhaust(&mut roots[..]); // If the number of computed roots is different than deg(Λ), then the roots are // invalid and the codeword is unrecoverable [1, p3], [2, p48], [3, p22]. if nroots != errors { return None; } Some((errors, Errors { roots: roots, descs: ErrorDescriptions::new(syn, loc), pos: 0..errors, })) } } /// Iterate over detected errors, yielding the location and pattern of each error. impl<P: PolynomialCoefs> Iterator for Errors<P> { type Item = (usize, P25Codeword); fn next(&mut self) -> Option<Self::Item> { self.pos.next().map(|i| self.descs.for_root(self.roots[i])) } } #[cfg(test)] mod test { use std; use collect_slice::CollectSlice; use super::*; use coding::galois::{P25Codeword, PolynomialCoefs, Polynomial}; impl_polynomial_coefs!(TestCoefs, 9); type TestPolynomial = Polynomial<TestCoefs>; #[test] fn test_roots() { // p(x) = (1+α^42x)(1+α^13x)(1+α^57x) let p = TestPolynomial::new([ P25Codeword::for_power(0), P25Codeword::for_power(42), ].iter().cloned()) * TestPolynomial::new([ P25Codeword::for_power(0), P25Codeword::for_power(13), ].iter().cloned()) * TestPolynomial::new([ P25Codeword::for_power(0), P25Codeword::for_power(57), ].iter().cloned()); let mut r = PolynomialRoots::new(p); let mut roots = [P25Codeword::default(); 3]; r.collect_slice_checked(&mut roots[..]); assert!(roots.contains(&P25Codeword::for_power(42).invert())); assert!(roots.contains(&P25Codeword::for_power(13).invert())); assert!(roots.contains(&P25Codeword::for_power(57).invert())); let p = TestPolynomial::unit_power(0); let mut r = PolynomialRoots::new(p); assert!(r.next().is_none()); } }